If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+14-114x=0
a = 16; b = -114; c = +14;
Δ = b2-4ac
Δ = -1142-4·16·14
Δ = 12100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12100}=110$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-114)-110}{2*16}=\frac{4}{32} =1/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-114)+110}{2*16}=\frac{224}{32} =7 $
| 2.3x=20.3 | | 2x(x+3)=(x+1)(2x–5) | | 2/3x=4;6 | | 6-y=-y | | 5x+4.3=2x-20 | | 4-d=-(d-4 | | (5+-2i)+(3-2i)=0 | | 2x-3(-7)=-8 | | 3•4+12.8+2x=18x | | 0=-4.9x+32x+0.2 | | 3y=2/7 | | 6x+2=3x+44 | | X+v=11 | | -2/5(45n+60)+n=-41 | | 8x+57=169 | | (12x^2+3x)(8x^2+2x)=0 | | u/3=u-10 | | (12x^2)(8x^2+2x)=0 | | x2-16x+40=-3x-2 | | x+5+6x=10x-9 | | 1/5t=14 | | 3/y=y/8y-45 | | -1/7x+10=7 | | F=9/5(n-85) | | x2-4x-13=8 | | n^2-n-108=0 | | 5=-5=x^2 | | n+n^2=126 | | 3.5y–3.5=10.5 | | 8=3×+6y | | n-18=-25 | | 54x+8=168 |